segunda-feira, 19 de agosto de 2019



efeito Hall está relacionado ao surgimento de uma diferença de potencial em um condutor elétrico, transversal ao fluxo de corrente e um campo magnético perpendicular à corrente. Esse fenômeno, descoberto em 1879 por Edwin Herbert Hall,[1] é extremamente importante no estudo da condutividade, pois a partir do coeficiente de Hall é possível determinar o sinal e a densidade de portadores de carga em diferentes tipos de materiais. O efeito Hall é a base de diversos métodos experimentais utilizados na caracterização de metais e semicondutores.

    Descoberta[editar | editar código-fonte]

    Em 1879 Edwin Herbert Hall descobriu o efeito que leva seu nome durante seu doutorado em física sob a supervisão de Henry Augustus Rowland na Universidade Johns Hopkins em BaltimoreMaryland. Durante seus estudos experimentais sobre a influência do campo magnético nos portadores de carga da corrente elétrica ele determinou a existência de portadores de carga negativa muitos anos antes da descoberta dos elétrons por Joseph John Thomson.

    Teoria[editar | editar código-fonte]

    Durante seus estudos de doutorado, Edwin Hall buscava entender qual a influência de um campo magnético externo sob um fio condutor. Ele queria entender se a força devido a este campo externo atuaria sobre os portadores de corrente elétrica ou sobre o fio como um todo. Hall acreditava que essa força magnética atuaria sobre os portadores de carga fazendo com que a corrente se deslocasse para uma determinada região do fio, e portanto, a resistência do fio iria aumentar. Apesar de não observar tal aumento na resistência do fio em seus experimentos, Hall sabia que de alguma forma a corrente elétrica era alterada sem que a resistência fosse modificada. Ele propôs a presença de um estado de stress em uma determinada região do condutor, devido ao acúmulo de portadores de carga, que originaria uma diferença de potencial transversal mais tarde conhecida como tensão de Hall.
    Para entender melhor a origem desse fenômeno vamos considerar a definição para corrente elétrica segundo o modelo de Drude, ou seja, vamos considerar que a corrente é formada por um fluxo de portadores de carga (elétronsíons ou lacunas) que seguem uma trajetória linear até que se choquem com os átomos da rede, impurezas, fônons, etc. Em seus experimentos, Hall considerou um fio metálico conduzindo corrente elétrica ao longo do eixo x (com densidade de corrente ), sob a ação de um campo magnético externo  aplicado ao longo do eixo z. A presença do campo faz com que os portadores de carga experimentem uma força magnética que causa uma deflexão na trajetória dos portadores na direção y. Essa mudança de trajetória gera um gradiente de cargas e consequentemente surge um campo elétrico na direção y , conhecido como campo de Hall. Devido as dimensões finitas do fio haverá um acúmulo de cargas nas extremidades ao longo da direção y, resultando em uma diferença de potencial conhecida como potencial de Hall. Para um metal simples, ou seja, com um único portador de carga, o potencial de Hall pode ser escrito como:
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde  representa a densidade de portadores e  a espessura do fio. Uma outra quantidade interessante relacionada ao efeito Hall é o coeficiente de Hall, que é a constante de proporcionalidade entre o campo de Hall e o produto do campo magnético com o fluxo de corrente
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Como o sinal da força magnética é o mesmo para cargas positivas se movendo em uma determinada direção e cargas negativas se movendo na direção oposta, o sinal do coeficiente de Hall depende exclusivamente do campo de Hall. Assim, como o sinal de  depende exclusivamente do sinal da carga dos portadores, o coeficiente de Hall permite identificar se o fluxo de corrente se deve a portadores negativos () ou positivos (). Desta maneira, podemos concluir que o efeito Hall, além de permitir a determinação da densidade de corrente e a mobilidade dos portadores ou do campo magnético, este também permite a distinção entre um fluxo de cargas positivas e negativas. O efeito Hall é a primeira prova real de que a corrente elétrica em metais se deve ao movimento dos elétrons e não dos prótons. Ainda mais, esse efeito demonstrou que em alguns materiais, especialmente semicondutores do tipo p, a maneira mais apropriada de se descrever a corrente elétrica é através do fluxo de buracos positivos ao invés de elétrons. Contudo, o efeito Hall gera confusões em alguns casos, por exemplo, buracos se movendo para a esquerda na realidade são elétrons se movendo para a direita e portanto devemos ter o mesmo sinal para o coeficiente de Hall, o que não ocorre. Tal problema só pode ser solucionado quando consideramos a teoria quântica do transporte em sólidos [2].

    Efeito Hall em semicondutores[editar | editar código-fonte]

    A forma do coeficiente de Hall para semicondutores é mais complexa, uma vez que podemos ter dois tipos de portadores de carga, elétrons e buracos, com densidades e mobilidades diferentes. Para o caso de campos magnéticos moderados podemos escrever o coeficiente de Hall como sendo [3]
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde  e  são as densidades e  e  são as mobilidades para os elétrons e buracos respectivamente. No caso de campos magnéticos altos o coeficiente de Hall é análogo ao caso de um único portador
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde .

    Efeito Hall quântico[editar | editar código-fonte]

    Ver artigo principal: Quantum Hall Effect (em inglês)
    Efeito observado em sistemas eletrônicos de duas dimensões sob baixas temperaturas e altos campos magnéticos. A característica marcante desse efeito é a presença de uma condutividade de Hall quantizada, onde a quantização esta relacionada aos níveis de Landau.

    Efeito Hall com spin[editar | editar código-fonte]

    Ver artigo principal: Spin Hall Effect (em inglês)
    O efeito Hall com spin esta relacionado com a existência de um acúmulo de spin nas extremidades de um condutor com uma corrente de portadores. Neste caso, não é necessária a presença de um campo magnético externo para se observar o efeito. Esse efeito foi descoberto por I. Dyakonov e V.I.Perel, em 1971, e observado experimentalmente 30 anos mais tarde em semicondutores e metais sob criogenia e à temperatura ambiente.

    Efeito Hall quântico com spin[editar | editar código-fonte]

    Ver artigo principal: Quantum Spin Hall Effect (em inglês)
    Observados em semicondutores de duas dimensões onde ocorre o acoplamento spin-órbita.

    Efeito Hall anômalo[editar | editar código-fonte]

    Em materiais ferromagnéticos (e materiais paramagnéticos na presença de um campo magnético), a resistividade Hall inclui uma contribuição adicional ao efeito Hall comum, conhecido como o efeito Hall anômalo. Esse efeito depende diretamente da magnetização do material, e é frequentemente maior que o efeito Hall comum. Embora este seja um fenômeno bem conhecido, ainda existem discussões sobre sua origem em diversos materiais. O efeito Hall anômalo pode ser um efeito extrínseco causado pelo espalhamento dos portadores de carga com spin, ou um efeito intrínseco que pode ser descrito em termos do efeito de Fase de Berry no espaço dos momentum do cristal [5].

    Efeito Hall em gases ionizados[editar | editar código-fonte]

    O efeito Hall em um gás ionizado (plasma) é significativamente diferente do efeito Hall em sólidos (onde o coeficiente de Hall  é sempre muito inferior à unidade). Em um plasma, o coeficiente de Hall pode assumir qualquer valor. O coeficiente de Hall, em um plasma é a relação entre a girofrequência do elétron, e a frequência de colisão entre os elétrons e as partículas pesadas ,
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde  é a massa do elétron.
    O valor do coeficiente de Hall é diretamente proporcional à intensidade do campo magnético. Fisicamente, sabemos que a trajetória dos elétrons é curvadas pela força magnética. No entanto, quando o coeficiente de Hall é baixo, o movimento entre os duas colisões com as partículas pesadas é quase linear. Mas, se o coeficiente de Hall é alto, a trajetória dos elétrons é altamente curvada. No caso do gás ionizado o vetor densidade de corrente não é mais colinear ao vetor campo elétrico, e o ângulo  entre eles esta relacionado ao coeficiente de Hall da seguinte maneira
    .
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D



    Fase de Berry na mecânica quântica edit ]

    Em um sistema quântico no n-ésimo auto - estado , uma evolução adiabática do hamiltoniano vê o sistema permanecer no n-ésimo auto-estado do hamiltoniano, enquanto também obtém um fator de fase. A fase obtida tem uma contribuição da evolução temporal do estado e outra da variação do auto-estado com a mudança de Hamiltoniano. O segundo termo corresponde à fase de Berry e para variações não cíclicas do Hamiltoniano pode-se fazer desaparecer por uma escolha diferente da fase associada aos autoestados do Hamiltoniano em cada ponto da evolução.
    No entanto, se a variação for cíclica, a fase de baga não pode ser cancelada; é invariante e se torna uma propriedade observável do sistema. Revendo a prova do teorema adiabático dado por Max Born e Vladimir Fock , em Zeitschrift für Physik 51 , 165 (1928), podemos caracterizar toda a mudança do processo adiabático em um termo de fase. Sob a aproximação adiabática, o coeficiente do enésimo auto-estado sob processo adiabático é dado por
    Onde é a fase Berry em relação ao parâmetro t. Alterando a variável t para parâmetros generalizados, poderíamos reescrever a fase de Berry em
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde parametriza o processo adiabático cíclico. Segue um caminho fechadono espaço de parâmetros apropriado. Fase geométrica ao longo do caminho fechadotambém pode ser calculado integrando a curvatura de Berry sobre a superfície delimitada por.





    massa de repouso do elétron (símbolo: me) é a massa de um elétron estacionário. É uma das constantes fundamentais da física e também é muito importante na química por causa de sua relação com a Constante de Avogadro. Tem um valor de cerca de 9.11×10−31quilogramas ou cerca de 5.486×10−4 Unidade de massa atômicaequivalente para uma energia de cerca de 8.19×10−14 joules ou cerca de 0.511 megaeletrônomos.[1]

      Terminologia[editar | editar código-fonte]

      O termo "massa de repouso" + energia cinética vem da necessidade de levar em conta os efeitos da relatividade especial sobre a massa aparente (ou "observada") de um elétron. É impossível "pesar" um elétron estacionário, e assim todas as medidas práticas devem ser realizadas em elétrons em movimento. O mesmo acontece com qualquer outra partícula subatômica. Para partículas como fótons ou glúons, a situação é ainda mais problemática, uma vez que o próprio conceito de uma partícula sem massa estacionária ou "em repouso" carece de significado.

      Determinação[editar | editar código-fonte]

      A massa de repouso do elétron em quilogramas é calculada a partir da definição da Constante de Rydberg R:
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      onde α é a constante de estrutura fina e h é a Constante de Planck.[1] A relativa incerteza, 5×10−8 no valor recomendado do CODATA 2006,[2] é devido inteiramente à incerteza no valor da constante de Planck.
      A massa atômica relativa do elétron pode ser medido diretamente em um Penning trap. Também pode ser deduzido a partir dos espectros de átomos de hélio antiprotônico(átomos de hélio) onde um dos elétrons foi substituído por um antipróton ou por medidas do elétron fator-g nos íons hidrogenóides 12C5+ ou 16O7+. O valor recomendado de 2006 CODATA tem uma relativa incerteza de 4.2×10−10.[1]
      A massa atômica relativa de elétrons é um parâmetro ajustado no conjunto CODATA de constantes físicas fundamentais, enquanto a massa de descanso de elétrons em quilogramas é calculada a partir dos valores da constante de Planck, a constante de estrutura fina e a constante de Rydberg.[1] A correlação entre os dois valores é insignificante (r = 0.0003).[2]

      Relação com outras constantes físicas[editar | editar código-fonte]

      Conforme mencionado acima, a massa de elétrons é usada para calcular a Constante de Avogadro NA:
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Portanto, ele também está relacionado com a Constante de massa atômica mu:
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Onde Mu é Constante de massa molar (definida em SI) e Ar(e) é uma quantidade diretamente medida, a massa relativa de elétrons]].
      Note que mu é definida em termos de Ar(e), e não o contrário, e assim o nome "massa de elétrons em unidades de massa atômica" para "Ar(e) envolve uma definição circular (pelo menos em termos de medidas práticas).
      A massa atômica relativa do elétron também entra no cálculo de todas as outras massas atômicas relativas. Por convenção, massas atômicas relativas são citadas para átomos neutros, mas as medidas reais são feitas em ions, quer num espectrômetro de massa ou um Penning trap. Portanto, a massa dos elétrons deve ser adicionada de volta aos valores medidos antes da tabulação.Deve ser feita uma correção para o equivalente em massa da energia de ligação Eb. Tomando o caso mais simples de ionização completa de todos os elétrons, para um nuclídeo X de número atômico Z,[1]
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Como as massas atômicas relativas são medidas como proporções de massas, as correções devem ser aplicadas a ambos os íons: felizmente, as incertezas nas correções são desprezíveis, como ilustrado abaixo para hidrogênio 1 e oxigênio 16.
       1H16O
      massa atômica relativa do XZ+ ion1.007 276 466 77(10)15.990 528 174 45(18)
      massa atômica relativa do Z electrons0.000 548 579 909 43(23)0.004 388 639 2754(18)
      correção para a energia de ligação−0.000 000 014 5985−0.000 002 194 1559
      massa atómica relativa do átomo neutro1.007 825 032 07(10)15.994 914 619 57(18)
      O princípio pode ser demonstrado pela determinação da massa atômica relativa dos elétrons por Farnham et al. na Universidade de Washington (1995).[3] Envolve a medição das frequências da radiação ciclotrônica emitida por elétrons e por íons 12C6+ + em uma armadilha de Penning. A proporção das duas frequências é igual a seis vezes a razão inversa das massas das duas partículas (quanto mais pesada a partícula, menor a frequência da radiação do ciclotron, quanto maior a carga na partícula, maior a frequência):
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Como a massa atômica relativa de 12C6+ ions é muito próxima de 12, a relação de frequências pode ser usada para calcular uma primeira aproximação a Ar(e), 5.486 303 7178×10−4.Este valor aproximado é então usado para calcular uma primeira aproximação a "Ar(12C6+), sabendo que Eb(12C)/muc2 (a partir da soma das seis energias de ionização do carbono) é 1.105 8674×10−6Ar(12C6+) ≈ 11.996 708 723 6367Este valor é então usado para calcular uma nova aproximação para Ar(e), e o processo repetido até que os valores já não variam (dada a incerteza relativa da medida, 2.1×10−9): isso acontece no quarto ciclo de iterações para esses resultados, dando "Ar(e) = 5.485 799 111(12)×10−4 para esses dados.

      Referências